
Memory corruption:
detect and fix

Lecture 04.01

Case study by Scary Bug

Do we really need all these
pointers?
• Pointers solve two common problems:

• Allow different sections of code to share information
without copying it

• Enable complex "linked" data structures like linked lists
and binary trees

What is the price we pay for using
pointers?
• New and ugly types of bugs

• Random crashes

• Difficult to debug

5 common types of bugs

1. Using uninitialized memory: bad pointer

2. Trespassing on someone else’s memory: overflow

3. Loosing pointer to memory storage: memory leak

4. Irresponsible function callers: memory leak

5. Accessing memory declared as free: dangling pointer

Recap: terminology

int * ip 16

int i 8

Pointer

Pointee

int ** ipp 128

Pointer to pointer

16

128

Referencing:
int i = 8;
int *ip;
ip = &i;
int **ipp;
ipp = &ip;

Dereferencing:
*ip is 8
**ipp is 8
*ipp = ip is 16
ipp is 128

Initialize your variables
Case of bad pointers

Freshly declared variables are
initialized to:

char arr [10];

printf (“%s\n”, arr)

j u n k v a l u e s

Freshly allocated memory
contains:

Friend *f = malloc (sizeof (Friend));

f->name = malloc (10);

j u n k v a l u e s

Freshly declared pointer variable
contains:

int * agePtr;

*agePtr = 1234;

Junk address,
say 256

What is agePtr pointing at?
Whatever it is – we are
writing 1234 into it

• We declare the int* (pointer to int) variable “agePtr"

• This allocates space for the pointer, but not the pointee!

• We access some random memory and destroy it

BAD pointer 1 2 3 4

256

Example: bad pointer

int * agePtr;

*agePtr = 1234;

BAD pointer

Detect

Possible valgrind messages:

Use of uninitialised value
Conditional jump or move depends on uninitialised value
Segmentation fault (core dumped)

BAD pointer

Fix

int * agePtr = malloc (sizeof (int));

*agePtr = 22;

BAD pointer

Exercise I. Detect and fix

// Returns a pointer to an int

int* killer() {

int temp;

return(&temp);

}

void victim() {

int* ptr;

ptr = killer();

*ptr = 42;

}
BAD pointer

Pointer variables look like normal
variables but require extra setup
• We are trained that when we allocate a simple variable,

such as int, we can use it immediately

• Pointers look like other variables, but rules for their use are
very different

• You have to assign your pointers to refer to valid pointees!

Don't be surprised when you forget!

BAD pointer

Because you may forget – make it
a habit to set initial values to 0!
typedef struct person {

char name [10];

int age;

struct person * next;

} Person;

• The sizeof each Person is 24 (say, 32-bit addresses, and 4
byte computer word), there are bytes added for padding

• There is no way to set values of padding with a normal field
assignment

BAD pointer

stdlib:
dynamic memory allocation

• malloc () - allocate some memory for us to use

• free () - release some memory that malloc() gave us earlier

• realloc () - change the size of some previously allocated
memory

• calloc () - just like malloc(), except clears the memory to
zero

calloc()

• calloc() is like malloc(), except that

• it clears the memory to zero for you

• it takes two parameters instead of one

p = malloc (10 * sizeof(int));

p = calloc (10, sizeof(int));

calloc()

• The pointer returned by calloc() can be used with realloc()
and free() just as if you had used malloc()

• It takes time to clear memory

• But it is always safer to use calloc than make your pointer
point to a random memory location!

NULL pointer

• NULL pointer is a pointer which is pointing to nothing.

• If we don’t have address to be assigned to a pointer, then
we can simply use NULL

• NULL vs Uninitialized pointer – An uninitialized pointer
stores an undefined value. A null pointer stores a defined
value, but one that is defined by the environment to not be
a valid address

BAD pointer

Summary

• Set value of declared pointers to NULL

• Set values of variables to default values

• Use malloc + memset

• Use calloc

Accessing memory that
is used for something
else
Case of memory trespassing

Truncate problem (from your lab)

• Write a function named truncate() that takes a string s and a
non-negative integer n.

• If s has more than n characters (not including the null
terminator), the function should truncate s at n characters
and return the number of characters that were chopped off.

• If s has n or fewer characters, s is unchanged and the
function returns 0. For example, if s is the string "function"
and n is 3, then truncate() changes s to the string "fun" and
returns 5.

Solution?

int truncate (char *s, int n) {

int retval = strlen(s);

s[n] = '\0';

retval -= strlen(s);

return retval;

}

When will this code
cause memory
trespassing and how
would you fix it?

Detect

Possible valgrind messages:

Invalid read of size 1
Invalid write

Trespassing

Fix

int truncate (char *s, int n) {

int len = strlen(s);

if (n <= len && n >=0) {

s[n] = '\0';

return len – n;

}

return 0;

}

Trespassing

Exercise II

void update_previous (char * str, int pos, char new_char) {

int len = strlen (str);

if (n <=len)

str [n-1] = new_char;

}

Trespassing

Array safety principles

• We need every occurrence of every subscript to be
checked at run time against both the upper and the
lower declared bounds of the array.

• People know how frequently subscript errors occur
on production runs where failure to detect them
could be disastrous.

• In any respectable branch of engineering, failure to
observe such elementary precautions would have
long been against the law.

1980 Turing Award lecture, C. A. R. Hoare

Trespassing

Array bound checking in C:
Variant 1
• If array was declared and initialized in this function:

for (int i=0; i< sizeof (array) / sizeof (array[0]); i++) {

// Use array[i]

}

Problems with Variant 1

• The problem is with function calls, and passing your arrays
as arguments: arrays decay to pointers when passed as an
argument

• Thus the called function only sees a pointer to the first
element

Array bound checking in C:
Variant 2
• A common workaround is to simply have all your arrays

terminated by a special character.

• If you have an array of integers, then use INT_MAX
(from limits.h) as the special value to signify end of the
array

• For all arrays of pointers use NULL (if NULL can
legitimately appear in your array then use (NULL -1)
instead)

Variant 2 example:
array of ints
int array[] = {10, 12, 13, 14, 15, INT_MAX};

for (size_t i=0; array[i]!=INT_MAX; i++) {

// Use array[i]

}

Trespassing

Variant 2 example:
array of C strings
char *array[] = {

"One", "Two", "Three", "Four", NULL

};

for (size_t i=0; array[i]; i++) {

// Use array[i]

}

Trespassing

Summary

• Cross-check the size of your arrays:

both for upper and for lower bounds

Trespassing

Memory leak: orphan
storage
Case of lost keys

malloc without free

• What happens if some memory is heap-allocated, but never
deallocated?

• A program which forgets to deallocate a block is said to have
a "memory leak"

• The heap gradually fills up, and blocks are not returned for
re-use

• Memory leaks cause big problems for a program which runs
for an indeterminate amount of time

• Many commercial programs have memory leaks

Memory leak

Example 1: pointer to memory
block is lost
int * p = malloc (sizeof (int));

*p = 33;

int *s = malloc (sizeof (int));

*s = 22;

p = s;

Memory leak

Example 2: free Linked List

Person *head;

void free_person_list (Person *head) {

Person *temp;

Person *node = head;

while (node != NULL) {

temp = node;

node = node->next;

free (temp);

}

head = NULL;

}

Memory leak

typedef struct person {
char * name ;
struct person * next;

} Person;

Person * create_person (char *name) {
p = malloc (sizeof (Person));
p->name = malloc (strlen (name)+1);
strcpy (p->name, name);

}

Detect

Possible valgrind messages:

X bytes in X blocks are definitely lost
More mallocs than frees

Memory leak

Fix

Person *head;

void free_person_list (Person *head) {

Person *temp;

Person *node = head;

while (node != NULL) {

temp = node;

node = node->next;

free (temp->name);

free (temp);

}

head = NULL;

}
Memory leak

Exercise III

void change_name (Person *p, char *new_name) {
p->name = malloc (strlen (new_name)+1);
strcpy (p->name, new_name);

}

Memory leak

typedef struct person {
char * name ;
struct person * next;

} Person;

Person * create_person (char *name) {
p = malloc (sizeof (Person));
p->name = malloc (strlen (name)+1);
strcpy (p->name, name);

}

realloc()

• Takes a chunk of memory you allocated with malloc() (or
calloc()) and changes the size of the memory chunk

• Might have to move your data to another place in memory if
it can't increase the size of the current block

• It means you should use realloc() sparingly since it could be
an expensive operation

• Usually the procedure is to keep track of how much room
you have in the memory block, and then add another big
chunk to it if you run out

Example:
void add_data (int new_data)
// if data_count == data_size, the area is full and needs to be realloc()'d
before we can add another:

if (data_count == data_size) {

// we're full up, so add a bucket

data_size += BUCKET_SIZE;

data = realloc (data, data_size * sizeof(int));

}

*(data+data_count) = new_data;

// data[data_count] = new_data;

data_count++;

Summary

• Free all dynamically allocated memory

• Check that number of mallocs is equal to number of frees

• Do not re-assign pointer without freeing its memory first:
use realloc if you need to change the pointee

Memory leak

Someone needs to free
the memory
Case of irresponsible caller

Example: return a copy of C string

/* Given a C string, return a heap-allocated copy of the string.
The caller takes over ownership of the block and is responsible
for freeing it. */

char* StringCopy (const char* string) {

char* newString;

int len;

len = strlen(string) + 1;

newString = malloc(sizeof(char)*len);

strcpy(newString, string);

return (newString); // return a ptr to the block

}

Irresponsible call to StringCopy

int main () {

char *copy1 = StrCopy (“one”);

char *copy2 = StrCopy (“two”);

}

Irresponsible
caller

Or even worse

int main () {

StrCopy (“one”);

StrCopy (“two”);

}

Irresponsible
caller

Detect

Valgrind messages:

X bytes in X blocks are definitely lost
More mallocs than frees

Irresponsible
caller

Two solutions for calling functions
with dynamic memory requirements

Variant 1: Caller ownership

• The caller owns its own memory block. It may pass a pointer to
this block to the callee for sharing purposes, but the caller
retains ownership. The callee can access things in this block,
and allocate and deallocate its own memory, but it should not
move the caller's memory pointer

Variant 2: Callee allocated and returned

• The callee allocates some memory and returns it to the caller.
The new memory is passed to the caller so they can see the
result, and the caller must take over ownership of the memory

Variant 1 example:
Caller owns the memory
void set_string (const char* string, char *new_value) {

// copy the passed-in string to the passed-in block

strcpy (string, new_value);

}

Int main () {

char * copy1 = malloc (strlen (“one”)+1);

set_string (copy1, “one”);

…

free (copy1);

}

Irresponsible
caller

Variant 2 example:
Callee allocated and returned
• Caller has to deallocate the memory after use

char * copy1 = StrCopy (“one”);

char *copy2 = StrCopy (“two”);

…

free (copy1);

free (copy2);

Irresponsible
caller

Summary

• Each time you call a function that returns a pointer, the
responsibility to free the memory is on the caller

• If you pass to the function a pre-allocated memory block –
the responsibility to free it is on the caller

Irresponsible
caller

Accessing memory after
is was set free
Case of dangling pointer

Dangling pointer

free()

• This function takes as its argument a pointer that you've
picked up using malloc() (or calloc())

• It releases the memory associated with that data

How does free work

• The program is finished using a block of memory, and it makes an
explicit deallocation request to the heap manager

• The heap manager updates its private data structures to mark
that block for future reuse

• Once you've freed some memory you must remember not to use
it any more. Why?

free (p);

• After that, p still stores the same memory address. However this
memory is declared ``available,'' and a later call to malloc might
give that memory to some other part of your program

• By using the invalid pointer you will access and corrupt this new
data

Dangling pointer

Example:
Dynamic multi-dimensional arrays
• Static 2D array:

char matrix[10][5]

• Dynamic array:

char ** strings;

Order of allocation

strings = (char **) malloc (10 * sizeof (char *));

for (i=0; i<10; i++)

strings [i] = (char *)malloc (5 *sizeof (char));

Example: accessing pointer after
free
free (strings);

for (i=0; i<10; i++)

free (strings [i]);

Dangling pointer

Correct order of deallocation

for (i=0; i<10; i++)

free (strings [i]);

free (strings);

Dangling pointer

To avoid problems with using p
after free (p)
• Always set p=NULL after call to free(p)!

free (p);

…

p=NULL; //accessing this pointer accidentally will not harm
some other newly allocated parts

…

free (p); //freeing NULL pointer several times does not cause
an error

Dangling pointer

Golden rules of C programming

❖Initialize your memory. Initialize your pointers

❖Cross-check memory boundaries

❖Free pointee memory before moving its

❖Preserve correct order of memory deallocation in nested
structures

❖Keep track of what was returned from a function and free
returned memory by the caller

❖Free dynamic memory after use. Set pointer to NULL

